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Translator’s Preface

The discovery of the notion of entropy of dynamical systems is quite interesting and
instructive, and has some unexpected twists. The story started with the Kolmogorov’s
idea of transplanting Shannon’s notion of entropy from the theory of information into

c© Nikolai V. Ivanov, selection and translation of the papers – April-May 2014, Preface – May 2015. This
work was done as a service to the mathematical community. It was not supported by any governmental
or non-governmental agency, foundation, or institution.
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the theory of dynamical systems, and with Kolmogorov’s breakthrough results about
Bernoulli shifts. For the first publication of his definition of entropy and its applications
Kolmogorov developed a new approach intended to work not only for the dynamical
systems with discrete time (i.e. automorphisms) such as Bernoulli shifts, but also for the
dynamical systems with continuous time (i.e. flows). This approach was based on a the-
orem which turned out to be wrong, as it was very soon pointed out by Rokhlin. Both
Kolmogorov and Sinai (who was at the time a doctoral student of Kolmogorov) quickly
and independently repaired the theory for automorphisms. Surprisingly, the case of the
flows turned out to be more difficult, but nevertheless within two months Sinai intro-
duced a working definition of the entropy of flows.

Sinai published in English at least two accounts of these events; see [1], [2]. But the orig-
inal 1958 and 1959 papers by Kolmogorov and Sinai were never translated. The only
exception is the first 1959 paper of Sinai, which was only recently translated by Sinai
himself for the inclusion into the first volume of his Selecta; see [3]. Clearly, all these pa-
pers are important historical documents and deserve to be translated into English. This is
done in the present collection of translations. The already translated 1959 paper of Sinai
is translated anew, but only partially. Namely, only the part devoted to the definition
of entropy is translated. In contrast with the free translation by Sinai, the present trans-
lation is intended to be as faithful to the original as possible. In addition, 1985 version
of Kolmogorov’s 1958 paper and his 1987 comments to the same paper were translated.
The 1985 version of Kolmogorov’s paper was translated anew without consulting the
existing translation. The translator hopes the present translation is more faithfull to the
original than the previous one.

The translator attempted to preserve to the extent possible even the formatting features
of Russians originals. Some of them are quite outdated, as is the writing style of Doklady
1958-1959 papers, which the translator also attempted to follow.
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A new metric invariant of transitive
dynamical systems and of automorphisms of

Lebesgue spaces∗†

A. N. Kolmogorov

It is well known that a significant part of the metric theory of dynamical systems
can be presented as an abstract theory of “flows” {St} on “Lebesgue spaces” M with
a measure µ in a form, invariant with respect to “isomorphisms modulo zero” (see the
expository paper [1] by V. A. Rokhlin, the definitions and notations of which are adopted
in the following exposition). We will assume that the measure on M is normalized by
the condition

µ(M) = 1 (1)

and is non-trivial (i.e., we assume that there exist a set A ⊂M with 0 < µ(A) < 1). Many
examples of transitive automorphisms and transitive flows having so-called Lebesgue
spectrum of countably infinite multiplicity are known (for automorphisms see [1, § 4],
for flows [2 – 5]). From the spectral point of view we have here only one type of automor-
phisms Lω0 and only one type of flows Lω. The question if all automorphisms of type
Lω0 (respectively, all flows of type Lω) are metrically isomorphic to each other mod 0
remained open up to now. We show in § 3, § 4 that the answer to this question negative
both in the case of automorphisms and in the case of flows. The new invariant, which
allows to split the class of automorphisms Lω0 and the class of flows Lω into a contin-
uum of invariant subclasses, is the entropy per unit of time. The prerequisites from the
theory of information are presented in § 1 (the notions of the conditional entropy and of
the conditional information are, probably, of wider interest, despite the fact that the ex-
position closely adheres to the definition of the quantity of information from [7] and the
numerous papers developing the ideas of [7]). In § 2 the definition of the characteristics h
is presented and a proof of its invariance is given. In § 3, § 4 examples of automorphisms
and flows with arbitrary values of h subject to the condition 0 < h 6 ∞ are presented.
In the case of automorphisms we deal with examples constructed long ago; in the case
of flows constructing examples with finite h is a more delicate problem related to some
interesting questions of the theory of Markov processes.

∗Reports of the Academy of Sciences of the USSR (DAN SSSR), 1958, V. 119, No. 5, p. 861–864.
†English translation by Nikolai V. Ivanov, 2014.
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§ 1
Properties of conditional entropy and of conditional

quantity of information

Following [1] we denote by γ the boolean algebra of measurable sets of the space M,
considered mod 0. Let C be a subalgebra of the algebra γ closed in the metric ρ(A,B) =
µ((A−B)∪ (B−A)). This subalgebra generates a well defined mod 0 partition ξC of the
space M, defined by the condition that A ∈ C if an only if mod 0 the whole A can be
composed of entire members of partition ξC. “A canonical system of measures µC” is
defined on elements C of the partition ξC [1]. For every x ∈ C we define

µx(A | C) = µC(A | C). (2)

From the point of view of the probability theory (where every measurable function of
elements x ∈M is called “a random variable”), the random variable µx(A | C) is nothing
else but “the conditional probability” of the event A when the outcome of the “trial” C
is known [6, ch. 1, § 7].

For three subalgebras A, B, C of the algebra γ and C ∈ ξC, let

IC(A,B | C) = sup
∑

i,j

µx(Ai ∩Bj) log
µx(Ai ∩Bj)
µx(Ai)µx(Bj)

, (3)

where the supremum is taken over finite partitionsM = A1∪A2∪ . . .∪An,M = B1∪B2∪
. . . ∪ Bn, such that Ai ∩Aj = N, Bi ∩ Bj = N, i 6= j, Ai ∈ A, Bj ∈ B (N is the empty set).
If C is the trivial algebra N = {N,M}, then (3) turns into the definition of unconditional
information I(A,B) from Appendix 7 in [7] 1. The quantity (3) itself is interpreted as
“the quantity of information about the results of the trial A with respect to the trial B
when the outcome C of the trial C is known”. If we do not fix C ∈ ξC, then it is natural
to consider the random variable I(A,B | C), which is equal to Ix(A,B | C) = IC(A,B | C)
for x ∈ C. In what follows we will deal with its mathematical expectation

MI(A,B | C) =

∫

M
Ix(A,B | C)µ(dx). (4)

The definitions of the conditional entropy and of the average conditional entropy
H(A | C) = I(A,A | C), MH(A | C) =

∫
MHx(A | C)µ(dx) do not require any special

explanations.
Let us list the properties of the conditional quantity of information and of the con-

ditional entropy which will be needed later. In the case of the unconditional quantity of
information and the unconditional entropy the properties (α) and (δ) are well known,

1The authors of the note [8] did not paid timely attention to Appendix 7 in [7], which was not included
into the Russian translation [9]. The note [8] should start with a reference to this appendix in [7].
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the property (ε) for the unconditional quantity of information is the content of Theorem
2 of the note [8]. The proofs of properties (β) and (γ) are easy. Concerning the property
(β) one should note only that the similar proposition for the quantity of information
instead of the entropy (namely, that C ⊇ C ′ implies I(A,B | C) > I(A,B | C ′)) is wrong.
By this reason the lower limit and the symbol > are present in the property (ζ): the
corresponding limit may not exist, and the lower limit in some cases may be bigger than
MI(A,B | C).

(α) I(A,B | C) 6 H(A | C), the equality is assured if B ⊇ A.

(β) If C ⊇ C ′, then H(A | C) 6 H(A | C ′), mod 0.

(γ) If B ⊇ B ′, then MI(A,B | C) = MI(A,B ′ | C) + MI(A,B | C∨B ′), where C∨B ′)
is the minimal closed σ-algebra containing C and B ′.

(δ) If B ⊇ B ′, then MI(A,B | C) > MI(A,B ′ | C).

(ε) If A1 ⊆ A2 ⊆ . . . ⊆ An . . .
⋃
n
An = A, then

lim
n→∞

MI(An,B | C) = MI(A,B | C).

(ζ) If C1 ⊇ C2 ⊇ . . . ⊇ Cn . . .
⋂
n
Cn = C, then

lim inf
n→∞

MI(A,B | Cn) > MI(A,B | C).

§ 2
The definition of the invariant h

We will say that a flow {St} is quasi-regular (is of the type R) if 2 there is a closed
subalgebra γ0 of the algebra γ, such that its translations γt = Stγ0 have the following
properties:

(I) γt ⊆ γt ′ , if t 6 t ′. (II)
⋃

t

γt = γ. (III)
⋂

t

γt = N.

If the flow is interpreted as a stationary random process, then γt may be considered as
the algebra of events “depending only on the behavior of the process up to the moment
of time t”. One can easily prove that flows of type R are transitive, and one can deduce
from the results of Plessner [11, 12] that they have homogeneous Lebesgue spectrum. If
the multiplicity of the spectrum is equal to ν (ν = 1, 2, . . . ,ω), then we will say that the
flow is a flow of type Rν. It is obvious that Rν ⊆ Lν, where Lν is the class of flows with

2This condition is much weaker that the condition of “regularity” usually used in the theory of random
processes. See the end of § 4 for this.
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homogeneous Lebesgue spectrum of multiplicity ν. But, perhaps, all Lν (and hence all
Rν) except Lω (Rω) are empty, and that Lω = Rω.

T h e o r e m 1. For the flow {St}, if there exist γ0 with the properties (I), (II), (III), and if
∆ > 0, then MH(γi+∆ | γi) = ∆h, where h is a constant such that 0 < h 6 ∞.

T h e o r e m 2. For a given flow {St} the constant h does not depend on the choice of γ0
with the properties (I), (II), (III).

Let us outline the proof of Theorem 2. Suppose that the constants h < ∞ and h ′

correspond to two choices γ0 and γ ′0. By theorem 1 and lemmas (α) and (ε) for every
ε > 0 one can find k such that

h = MI(γt+1, | γt) = MI(γt+1,γ | γt) 6 MI(γt+1,γ ′t+k | γt). (5)

By lemma (ζ), from (5) follows that there exists m such that

h 6 MI(γt+1,γ ′t+k | γt ∨ γ
′
s) for t− s > m. (6)

It follows from (6) and lemmas (δ), (γ), (α), (β) (which should be used in this order!) that

nh 6
n−1∑

t=0

MI(γt+1,γ ′t+k | γt ∨ γ
′
−m) + 2nε 6

6
n−1∑

t=0

MI(γt+1,γ ′n+k | γt ∨ γ
′
−m) + 2nε =

= MI(γn,γ ′n+k | γ0 ∨ γ
′
−m) + 2nε 6 MH(γ ′n+k | γ0 ∨ γ

′
−m) + 2nε 6

6 MH(γ ′n+k | γ
′
−m) + 2nε 6 (n+ k+m)h ′ + 2nε,

h 6 n+ k+m

n
h ′ + 2ε. (7)

Since ε > 0 and n are arbitrary (and n is chosen after k and m are fixed), (7) implies
inequality h 6 h ′. This inequality can be proved in a completely similar manner for
the case h = ∞ also. The proof of the opposite inequality h ′ 6 h is similar, and this
completes the proof of theorem 2.

§ 3
Invariants of automorphisms

If we assume that t runs only over integer values in § 2, then {St} is uniquely defined
by the automorphism T = S1. By Theorems 1 and 2 there is an invariant 0 < h(T) 6 ∞.

It is easy to prove that every automorphism of the type R0 (the subscript is placed
in order to distinguish this case from the case of the flows with continuous time) has
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the Lebesgue spectrum of countably infinite multiplicity, i.e. among the classes Rν0 only
the class Rω0 ⊆ Lω0 is non-empty. This class splits into subclasses Rω0 (h) according to the
values h(T).

T h e o r e m 3. For every h, 0 < h 6 ∞, there exists an automorphism belonging to Rω0 (h).
The corresponding example are well known and can be constructed, for example,

by using the sequence of independent random trials L−1, L0, L1, . . . , Lt, . . . with the
probability distribution ξt of the trial Lt given by

P(ξt = ai) = pi, −

∞∑

i=1

pi logpi = h. (8)

The space M is assembled from sequences x = (. . . , x−1, x0, x1, . . . , xt, . . .), xt = a1,a2, . . .,
and the translation Tx = x ′ is defined by the formula x ′t = xt−1. The measure µ on M is
defined as the direct product of the probability measures (8).

§ 4
Invariants of flows

T h e o r e m 4. For every h, 0 < h < ∞, there exist a flow of the class Rω0 (h), i.e. a flow
having Lebesgue spectrum of countably infinite multiplicity and with the prescribed value of the
constant h.

The analogy with § 3 naturally suggests the idea of replacing for the proof of The-
orem 4 the discrete independent trials by the “processes with independent increments”
or by generalized processes “with independent values” [12, 13]. But such an approach
leads only to flows of the class Rω0 (∞) [5]. In order to get finite values h one needs to
use some more artificial construction. It is possible to present in this note only an outline
of one such construction.

Let us define independent random variables ξn, corresponding to all integers n, with
the following probability distributions of their values: P(ξ0 = k) = 3 · 4−k, k = 1, 2, . . .,
and P(ξn = k) = 2−k, k = 1, 2, . . ., for n 6= 0. In the case ξ0 = k, let us consider a random
point τ0 of the t-axis with uniform probability distribution in the interval −u2−k 6 τ0 6
0, and let us define random points τn for n 6= 0 by the relation τn+1 = τn + u2−ξn .

Let ϕ(t) = ξn for τn 6 t < τn+1. It is easy to check that the distribution of the
random function ϕ(t) is invariant with respect to the translations Stϕ(t0) = ϕ(t0 − t). It
is easy to calculate that h{St} = 6/u (during a unit of time one encounters 3/u points τn

in average, and every ξn contributes the entropy
∞∑
i=1
k2−k = 2).

One can get a more graphic description of our random process if we include into
the description of its state ω(t) at moment of time t, in addition to the value ϕ(t), the
value δ(t) = t− τ∗(t) of the difference between t and the closest to t from the left point
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τn. If described in this way, our process turns out to be a stationary Markov process. It
deserves to be called only “quasi-regular”, because, while the corresponding dynamical
system is transitive, the value of the difference f(ω(t), t) = τ∗(t) = t− δ(t) is determined
up to a dyadic-rational summand by the behaviors of the process realization in any ar-
bitrary far past.

January 21, 1958
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Addendum to the paper about dynamical
systems∗†

A. N. Kolmogorov

V. A. Rokhlin pointed out that Theorem 2 of my paper [K] 1 is not correct. Another
definition of entropy was suggested in my paper [1] 2. The shortest way of introducing
the notion of entropy was suggested by Y. G. Sinai (see [2]). I would like to attract
attention also to the paper [3] of A. G. Koushnirenko, who proved that the entropy of
every smooth diffeomorphism of or vector field on a compact smooth manifold with
respect to an absolutely continuous invariant measure is finite.
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∗Kolmogorov A. N. Theory of information and theory of algorithms, Nauka Publishing House, Moscow
1987 (304 pp.), p. 275.
†English translation by Nikolai V. Ivanov, 2014.
1This paper was reprinted as the paper No. 5 in a volume of selected papers by A. N. Kolmogorov

(see the first footnote above); the present note is one of the Comments and appendices from this volume. –
Translator’s note.

2In [1], this definition was proved to be correct without using Theorem 2 from [K]. – Translator’s note.
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On the entropy per unit of time as a metric
invariant of automorphisms∗†

A. N. Kolmogorov

V. A. Rokhlin pointed out to me that the proof of Theorem 2 from my note [1] im-
plicitly uses the following assumption.

A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . .,
⋂
n
An = A implies that

⋂
n
(B∨An) = B.

V.A. Rokhlin constructed an example showing that Theorem 2 from the note [1] is
wrong.1 Theorems 3 and 4 lose their meaning with the loss of Theorem 2.

In this note I show that in discrete case (i.e. for automorphisms) the number h in
examples from § 3 is still an invariant of the corresponding automorphisms. The general
definition of this invariant closely follows the definition of entropy of Shannon. Such an
approach was developed by me before writing the note [1]. This approach was replaced
by the more complicated one, presented in [1], only for the sake of dealing with the more
complicated continuous case (i.e. with flows).

∗Reports of the Academy of Sciences of the USSR (DAN USSR), 1959, V. 124, No. 4, p. 754–755.
†English translation by Nikolai V. Ivanov, 2014.
1With a kind permission of V. A. Rokhlin I will present here his example. Let Gm be the additive group

of numbers of the form αm−β (m is a natural number, α is an integer, β is a non-negative integer. Let
us denote by U the automorphism of the group G6, acting by division by 6, denote by M the character
group of G6, and by T the automorphism of M adjoint to U. Subgroups G2, G3 of the group G6 have the
following obvious properties

G2 ⊂ G2,
∨

n

UnG2 = G6,
⋂

n

UnG2 = 0,

G3 ⊂ G3,
∨

n

UnG3 = G6,
⋂

n

UnG3 = 0.

It follows that these subgroups determine subalgebras S2, S3 of the algebra S of measurable sets of the
space M, which satisfy the conditions of quasi-regularity. At the same time, G2 is a subgroup of UG2 of
index 3, and G3 has index 2 in UG3, and hence

MH(TG2 | G2) = lg 3, MH(TG3 | G3) = lg 2.

And indeed, here we have
⋂

n

(G2 ∨ TnG3) 6= G2,
⋂

n

(G3 ∨ TnG2) 6= G3.
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In this note we keep the definitions and notations of the note [1]. For every closed
subalgebra A0 of the algebra S let

At = StA0, As,t =
∨

s<u6t
Au, S(A0) =

∨

t

At .

If the condition
S(A0) = S (A)

holds (in the following A0 ∈ A), then a choice of A0 leads to a realization of the system
of automorphisms St as a stationary random process, for which elements of the algebra
At are treated as “the random events observable at the moment of time t”. The following
theorem is well known (see, for example, [3]).

T h e o r e m 1∗. For every closed subalgebra there exits the limit (0 6 h 6 ∞)

h(A0) = lim
t−s→∞

H(As,t).

L e m m a 1. If h(A0) <∞ and A ′0 ∈ A, then

h(A0) 6 h(A ′0).

For the proof we note that by (A)
∨

n

A ′−n,n = S

and that in view of (ε) from [1] for every ε > 0 there is n such that

I(A0,A−n,n) > H(A0) − ε,

i.e.
MH(A0 | A ′−n,n) = H(A0) − I(A0,A ′−n,n) 6 ε,

MH(As,t | A ′s−t,t+n) 6
∑

s<u6t
MH(Au | A ′u−n,u+n) 6 (t− s)ε.

Therefore
H(As,t) 6 I(As,t,A ′s−n,t+n) + MH(As,t | A ′s−n,t+n) 6

6 H(A ′s−n,t+n) + (t− s)ε,

or, after dividing by t− s and taking the limit for t− s→∞:

h(A0) 6 h(A ′0) + ε.

Since ε > 0 is arbitrary, this proves the lemma.
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The following theorem immediately follows from Lemma 1:
T h e o r e m 2∗. If A0 ∈ A, A ′0 ∈ A and h(A0), h(A ′0) are finite, then

h(A0) = h(A
′
0).

Theorems 1∗ and 2∗ are similar to Theorems 1 and 2 of the note [1]. If we set

h1(T) = inf
A0∈A

h(A0),

then we see that h1 is equal to ∞ if h(A0) = ∞ for all A0 ∈ A; but if there is an A0 ∈ A
with finite h(A0), then the value h(A0) for all such A0 is the same and h1(T) is equal to
the common value of all finite h(A0). Theorem 2∗ (and Lemma 1 directly in the case of
infinite h) easily implies that in the examples of § 3 of the note [1] with

h = −
∑

pi logpi

the invariant h1 is equal to h.
Remarks added in proofs.
1. Recently Y. Sinai managed to transfer the definition of the entropy introduced by

him in [2] to the flows in such a way that the entropy is invariant with respect to “iso-
morphisms modulo zero” and flows constructed in § 4 of my note [1] have the entropy
6/u, as was claimed in [1], and therefore are not isomorphic for different values u.

2. Concerning the very idea of using the notions of the theory of information for
construction of invariants of automorphisms and flows, one should mention that this
idea without any specific results is also contained in the diploma paper (an analogue
of the master thesis – translator’s note) of D. Z. Arov, defended at the Odessa State
University in the spring of 1957.
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On the notion of entropy of a dynamical
system∗(an excerpt)†‡§

Y. G. Sinai

(Submitted by academician A. N. Kolmogorov at November 25, 1958)

§ 1. In this note we present a definition of entropy suitable for arbitrary automor-
phisms of Lebesgue spaces. Theorem 1, proved right after the definition, suggests how
to compute the entropy in some cases. This theorem serves as a basis for producing new
metric invariants of some ergodic automorphisms of compact commutative groups.

§ 2. Let M be a Lebesgue space, S be its σ-algebra if measurable sets and µ be the
measure of M, µ(M) = 1; and let T be an arbitrary automorphism of this space [2]. A
finite partition A = {A1 . . .An} of the space M is understood as a presentation of M as a

sum of disjoint sets1 M =
n⋃
i=1
Ai. The partition TkA is understood as the partition formed

by set {TkAi}, i = 1, . . . , n.
The entropy of an arbitrary finite partition A is defined by the well known formula

h(A) = −

n∑

i=1

µ(Ai) logµ(Ai).

This formula allows us to compute the value of the entropy of the partition A∨ TA∨

. . .∨ TnA defined by all possible sets of the form Ai0 ∩ TAi1 ∩ . . .∩ TnAin . It follows from
the general theorems of the theory of information [4] that for every finite partition A
there exist the limit

lim
k→∞

h(A∨ TA∨ . . . ∨ TkA)
k

= hT (A).

∗C. R. (Doklady) Acad. Sci. URSS (N. S.), Vol. 124 (1959), No. 4, 768–771.
†This excerpt includes only § 1, which is a four lines long introduction to the paper, and § 2, which is

devoted to the author’s version of the definition of entropy (this version quickly became the standard one
and was considered as the best one by A. N. Kolmogorov). The § 3, which is longer and is devoted to a
computation of the entropy of ergodic automorphisms of a 2-dimensional torus, is not included.
‡For a free translation of the whole paper by the author himself, see Y. G. Sinai, Selecta, Volume I: Ergodic

Theory and Dynamical Systems, Springer Science+Business Media, LLC, 2010, 3–8.
§English translation by Nikolai V. Ivanov, 2014. This is a faithful translation of an excerpt from the

original Russian publication and differs from author’s free translation cited in the previous footnote.
Some misprints in formulas in the original Russian paper are corrected here, but were left uncorrected in
author’s translation.

1All sets considered are assumed to be measurable.
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D e f i n i t i o n. The upper bound of hT (A) over all finite partitions A will be called
the e n t r o p y o f t h e a u t o m o r p h i s m T : hT = supA hT (A).

Let us consider two arbitrary partitions A = {A1 . . .Ak} and B = {B1 . . .Bl}. Let us
assume that the sets Bi belong to the closed σ-algebra generated by sets {TnAj, 1 6 j 6
k, −∞ < n <∞}. Then the following theorem holds.

T h e o r e m 1. For every two partitions A and B satisfying this assumption, the inequality
hT (B) 6 hT (B) holds.

Let us list some well known properties of the entropy, which are basic for our proof.
Let K, L, M be arbitrary finite partitions. Then

1) h(K∨ L) = h(K) + h(L | K);
2α) h(K) 6 h(K∨ L) 6 h(K) + h(L);
2β) h(K∨ L | m) 6 h(K |M) + h(L |M);
3) h(K | L) > h(K |M),

if the elements of the partition L can be presented as sums of elements of the partition
M.

P r o o f o f T h e o r e m. By properties 1) and 2α)

h(B∨ TB∨ . . . ∨ T rB) 6
6 h(B∨ TB∨ . . . ∨ T rB∨ T−nA∨ . . . TnA∨ . . . ∨ Tn+rA) =

= h(T−nA∨ . . . ∨ Tn−rA) + h(B∨ TB∨ . . . ∨ T rB | T−nA∨ . . . ∨ Tn+rA). (1)

Next, by properties 2β and 3)

h(B∨ TB∨ . . . ∨ T rB | T−nA∨ . . . ∨ Tn+rA) 6

6
r∑

i=0

h(T iB | T−nA∨ . . . ∨ Tn+rA) 6

6
r∑

i=0

h(T iB | T−n+iA∨ . . . ∨ Tn+iA) = (r+ 1)h(B | T−nA∨ . . . ∨ TnA). (2)

By using our assumption about partitions A and B, it is easy to show that for every
ε > 0 the inequality h(B | T−nA ∨ . . . ∨ TnA) < ε holds for sufficiently large n. By
dividing both parts of the inequality (1) and using our last statement and the inequality
(2), we get

h(B∨ TB∨ . . . ∨ T rB)
r

6 h(TA∨ . . . ∨ T2n+rA)

2n+ r

2n+ r

r
+ ε

r+ 1
r

.

Since n depends only on ε, by taking the limit for r → ∞ and noticing that ε is
arbitrary, we get the required result.

C o r o l l a r y. If the partition A is such that the closed σ-algebra generated by the
sets {TkAi}, −∞ < k <∞, 1 6 i 6 k, is equal to S, then hT = hT (A).
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T h e o r e m 2. If the partition A is such that the minimal σ-algebra contag sets {TkAi} for
k > 0 is equal to S, then hT = 0.

P r o o f is based on the fact that h(A | TA∨ . . . ∨ TnA) → 0 for n → ∞ under our
assumptions.

T h e o r e m 3. For every automorphism T the equality hTk = |k |hT holds.
P r o o f. For every partition A we have

h(A∨ . . . ∨ TnkA)
n |k |

> h(A∨ Tk ∨ . . . ∨ TnkA)
n |k |

,

or, after the limit for n→∞, hT (A) > 1
|k |
hTk(A).

The last inequality implies that hT > 1
|k |
hTk . Now, let h ′ be any number less than hT .

Then there is a partition A such that hT (A) > h ′. Consider the partition B = A∨ TA∨

. . . ∨ Tk−1A. Obviously, h(B∨ TkB∨ . . . ∨ Tk(n−1)B) = h(A∨ TA∨ . . . ∨ Tkn−1A), and

hTk > h(B∨ TkB∨ . . . ∨ Tk(n−1)B)

n
=
h(A∨ TA∨ . . . ∨ Tkn−1A)

|k |n
|k |.

Taking the limit for n → ∞ leads to hTk > h ′|k |. Since h ′ 6 hT is arbitrary, this proves
the theorem.
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Flows with finite entropy∗†

Y. G. Sinai

(Submitted by academician A. N. Kolmogorov at January 16, 1959)

§ 1. Let us consider a flow (M,S,St), where M is a Lebesgue space with the measure
µ; S is the σ-algebra of its measurable sets, and St, −∞ < t <∞, is a group of measure
preserving transformations acting on this space (see [2]). According to [3], for individual
automorphisms from this group one can introduce the notion of entropy hS∆ = hS(∆).
In all known examples the dependence of this function on ∆ turns out to be linear, but
there is no proof of this fact in the general case. By this reason the entropy of the flow St

is defined as the supremum

sup
∆>0

hS∆

∆
= hS.

For the computations of entropy of flows, it is convenient to use the following theo-
rem, which holds for every automorphism T .

T h e o r e m. Let {gt} be a sequence of partitions such that gk 6 gk+1,
∏
k

∞∏
n=−∞

{Tngk} = ε,

where ε is the partition into individual points, and h(gk) <∞. Then

hT = lim
k→∞

hT (gk).

The proof of this theorem is similar to the proof of Theorem 1 in [3].
It is proved in this note that there exist transitive flows with Lebesgue spectrum of

countably infinite multiplicity and arbitrary finite hS > 0. The examples of flows with
hS = ∞ are trivial. The example from § 3 was published in A. N. Kolmogorov’s paper
[1]. The examples from § 2 are also due to Kolmogorov.

§ 2. Let us consider a Markov process having as its phase space two segments A1B1
and A2B2 of length α and β respectively. In each of the segments the deterministic
uniform motion from the left to the right with unit speed takes place. A jump to A1
or A2 with probabilities 1/2, 1/2 happens at the right end (B1 or B2) of each of the
segments. It is known that a local description of the motion together with a given initial
distribution uniquely defines a measure on the space of trajectories of a Markov process.

∗C. R. (Doklady) Acad. Sci. URSS (N. S.), Vol. 125 (1959), No. 6, 1200–1202.
†English translation by Nikolai V. Ivanov, 2014.
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If we take the uniform distribution on both segments as the initial distribution, then the
resulting Markov process will be stationary.

In order to compute the entropy of the flow constructed in this way one needs to
compute the entropy of the corresponding automorphisms S∆. Let us partition A1B1
into segments of length α/2k. Let us partition A2B2 into segments of the same length
α/2k with only possible the exception of the last one. Altogether we will get 2k[1+ β

α + 1]
segments Iki . Let gk be the partition of the whole space into the sets Gki of trajectories
located at time moment 0 in the interval Iki . It is easy to see that for ∆ < min(α,β) the
sequence of partitions gk satisfies the conditions of Theorem.

Let us look what happens with the sets Gki when transformations S∆n are applied to
them. In other words, we need to consider how the sets Gki are divided into parts accord-
ing to the possible positions of the trajectories of the Markov process in the moments
of time 0,∆, . . . ,nδ, . . .. In the case of trajectories with deterministic motion during the
period of time from 0 till ∆ each individual set Gki is divided into no more than two
parts. In the case of sets Gki consisting of trajectories having a jump during the period of
time from 0 till ∆, each set Gki splits into the sum of two sets Gki1 and Gki2 according to
which of the segments, A1B1 or A2B2, the trajectory will belong at the moment of time
∆; both of these two sets have the conditional measure equal to 1/2. The further analysis
of our partition can be done independently for each of the sets Gki1 and Gki2 . Some of the
sets Gki may happen to be such that some part of the trajectories has a jump during the
period of time from 0 till ∆, and the other part is moving deterministically. The partition
in this case is the combination of two previous cases and does not differ from them.

After n steps the set Gki will be divided into separate subsets depending on the
number of the jumps of a trajectory. The conditional measure of such a subset is equal
to 2−ν, where ν is the number of jumps. In addition, each subset with a fixed number of
jumps will be subdivided into no more than (n+ 1) parts depending on into which of
the segments Iki the trajectory will get after the next step.

In order to complete the computation of the entropy it remains to point out that the
law of large numbers implies that, given an arbitrarily small ε, then with probability
higher that 1ε we have

2
α+β

(1 − δ) <
ν

n∆
<

2
α+β

(1 + δ)

for every δ and all sufficiently bin n. Therefore

(1 − ε)
2

α+β
(1 − δ) 6

H(
n∏
i=0
T i∆gk)

n∆
6

6 ε · 2k
(

2 +
β

α

)
+

2
α+β

(1 + δ) +
log(n+ 1)

n∆
−
ε log ε+ (1 − ε)log(1 − ε)

n∆
.
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By taking the limit for n → ∞, and then taking the limit for ε,delta → 0, we conclude
that

hS∆(g
k) =

2∆
α+β

.

It should be noted that the equality

hS∆(g
k) =

2∆
α+β

.

holds for every k. If α and β are non-commensurable, then the paron gk is a generating
partition for every k, and we get an example of a finitely generated automorphism which
can be embedded into a flow.

Speaking about the spectrum, it is not difficult to prove that in the case of non-
commensurable α and β the spectrum will be a Lebesgue spectrum of countably infinite
multiplicity1. Therefore, the considered flows provide us with examples of dynamical
systems which are spectrally isomorphic, but metrically non-isomorphic.

§ 3. Let us consider the example of a flow published in [1]. This example is a Markov
process having as the phase space a countable set of segments Γi = {Ai,Bi} of length
u/2i. On every segment we have the deterministic motion from the left to the right up
to the right end of the segment; at the right end a jump to the point Aj with probability
2−j occurs. The stationary distribution is the following: the probability of choosing l-th
segment is 3/4l, and the distribution on the l-th segment is uniform.

Let us divide each segment into the segments Iki of length u/2k, if such a subdivision
is possible. Let us left other segments unchanged. Let hk be the partition into trajectories
which are in segments Iki in the initial moment of time. Let us denote by Mi1i2...il the set
of trajectories which spend the period of time from −∆ till 0 entirely in the segments Γi1 ,
Γi2 , . . . , Γil . Obviously, this is possible only if u

2i1 + u
2i2 + · · ·+ u

2il
< ∆. Let M0 be the set

of trajectories having no more than one jump during the period of time from −∆ till 0.
Let us denote by m the partition of the space into sets Mi1i2...il and M0. Let gk = m · hk.
Then the conditions of Theorem 1 hold for the sequence of partitions gk.

The partition into the sets Gki is constructed completely similarly to § 2 by taking
into account what happens in time. If we fix the order of jumps, we will get a partition
of Gki into sets with the conditional measure equal to

p = 2−ν1−ν2−...−νk ,

where ν1,. . . , νk are the numbers of the segments, to which the trajectory belongs af-
ter the next jumps. The law of large numbers implies that with probability 1 − ε the
inequality

3
u
(1 − δ) 6 k

n∆
6 3
u
(1 + δ)

1This result was proved also by Girsanov.
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holds for the number of jumps k, and the inequality

6
u
(1 − δ1) 6 −

logp
n∆

6 6
u
(1 + δ1)

holds for the probabilities of the corresponding jumps.
Every set with a fixed order of jumps is subdivided into no more than k+n+ 1 part

according to the position of the trajectory at the moments i∆. Therefore,

(1 − ε)
6
u
(1 − δ1) 6

H

(
n∏
i=0
Si∆gk

)

n∆
6

6 εf(k) + 6
u
(1 + δ1) +

logn
(
1 +∆ 3

u(1 + δ)
)

n∆
−
ε log ε+ log(1 − ε)

n∆
,

where f(k) is the entropy of the initial distribution gk. By taking the limit for n → ∞
and ε, δ, δ1 → 0, we get 1

∆hS∆(g
k) = 6

u . It follows that hS = 6/u.
Finally, my pleasant duty is to express my gratitude to A. N. Kolmogorov for his

guidance during my work which lead to this paper.
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A new metric invariant of transitive
dynamical systems and of automorphisms of

Lebesgue spaces∗†‡

A. N. Kolmogorov

This paper is a revised version of my note [1] with the same title, the Theorem 2 of
which is wrong. In this version both the statement and the proof of Theorem 2 are re-
placed by completely different ones. This revision was prepared for the anniversary issue
of the Proceedings of the Steklov Mathematical Institute of the Academy of Sciences.

It is well known that a significant part of the metric theory of dynamical systems
can be presented as an abstract theory of “flows” {St} on “Lebesgue spaces” M with
a measure µ in a form, invariant with respect to “isomorphisms modulo zero” (see the
expository paper [2] by V. A. Rokhlin, the definitions and notations of which are adopted
in the following exposition). We will assume that the measure on M is normalized by
the condition

µ(M) = 1 (1)

and is non-trivial (i.e., we assume that there exist a set A ⊂M with 0 < µ(A) < 1). Many
examples of transitive automorphisms and transitive flows with so-called Lebesgue spec-
trum of countably infinite multiplicity are known (for automorphisms see [2, § 4], for
flows [3–6]). From the spectral point of view we have here only one type of automor-
phisms Lω0 and only one type of flows Lω. The question if all automorphisms of type
Lω0 (respectively, all flows of type Lω) are metrically isomorphic to each other mod 0
remained open up to now. We show in Sections 3–4 that the answer to this question
negative both in the case of automorphisms and in the case of flows. The new invari-
ant, which allows to split the class of automorphisms Lω0 and the class of flows Lω into
a continuum of invariant subclasses, is the entropy per unit of time. The prerequisites
from the theory of information are presented in Section 1 (the notions of the conditional
entropy and of the conditional information are, probably, of wider interest, despite the

∗Proceeding of the Mathematical Institute of AN USSR, 1985, V. 169, p. 94–98.
†English translation by Nikolai V. Ivanov, 2014.
‡Another English translation was published in Proceedings of the Steklov Institute of Mathematics, Vol.

169 (1986), No. 4, 97–102 (AMS). The present translator hopes that the new translation is more faithfully
follows the Russian original and the original (not translated into English before) 1958 version of this paper.
The AMS translation was not used while preparing this one. With the exception of § 2, the two versions
are almost identical, and so are the translations of both versions by the present translator.
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fact that the exposition closely adheres to the definition of the quantity of information
from [8] and the numerous papers developing the ideas of [8]). In Section 2 the def-
inition of the characteristics h is presented and a proof of its invariance is given. In
Sections 3–4 examples of automorphisms and flows with arbitrary values of h subject
to the condition 0 < h 6 ∞ are presented. In the case of automorphisms we deal with
examples constructed long ago; in the case of flows constructing examples with finite h
is a more delicate problem related to some interesting questions of the theory of Markov
processes.

1. Properties of conditional entropy and of
conditional quantity of information

Following [2] we denote by γ the boolean algebra of measurable sets of the space M,
considered mod 0. Let L be a subalgebra of the algebra γ closed in the metric ρ(A,B) =
µ((A−B)∪ (B−A)). This subalgebra generates a well defined mod 0 partition ξL of the
space M, defined by the condition that A ∈ L if an only if mod 0 the whole A can be
composed of entire members of partition ξL. “A canonical system of measures µC” is
defined on elements C of the partition ξL [2]. For every x ∈ C we define

µx(A | C) = µC(A | C). (2)

From the point of view of the probability theory (where every measurable function of
elements x ∈M is called “a random variable”), the random variable µx(A | C) is nothing
else but “the conditional probability” of the event A when the outcome of the “trial” L
is known [7, ch. 1, § 7].

For three subalgebras A, B, C of the algebra γ and C ∈ ξL, let

IC(A,B | L) = sup
∑

i,j

µx(Ai ∩Bj) log
µx(Ai ∩Bj)
µx(Ai)µx(Bj)

, (3)

where the supremum is taken over finite partitionsM = A1∪A2∪ . . .∪An,M = B1∪B2∪
. . . ∪ Bn, such that Ai ∩Aj = N, Bi ∩ Bj = N, i 6= j, Ai ∈ A, Bj ∈ B (N is the empty set).
If L is the trivial algebra N = {N,M}, then (3) turns into the definition of unconditional
information I(A,B) from Appendix 7 in [8] 1. The quantity (3) itself is interpreted as “the
quantity of information about the results of the trial A with respect to the trial B when
the outcome C of the trial L is known”. If we do not fix C ∈ ξL, then it is natural to
consider the random variable I(A,B | L), which is equal to Ix(A,B | L) = IC(A,B | L)
for x ∈ C. In what follows we will deal with its mathematical expectation

MI(A,B | L) =

∫

M
Ix(A,B | L)µ(dx). (4)

1The authors of the note [9] did not paid timely attention to Appendix 7 in [8], which was not included
into the Russian translation [10]. The note [9] should start with a reference to this appendix in [8].

20



The definitions of the conditional entropy and of the average conditional entropy
H(A | L) = I(A,A | L), MH(A | L) =

∫
MHx(A | L)µ(dx) do not cause any special

difficulties.
Let us list the properties of the conditional quantity of information and of the con-

ditional entropy which will be needed later. In the case of the unconditional quantity of
information and the unconditional entropy the properties (α) and (δ) are well known, the
property (ε) for the unconditional quantity of information is the content of Theorem 2 of
the note [9]. The proofs of properties (β) and (γ) are easy. Concerning the property (β)
one should note only that the similar proposition for the quantity of information instead
of the entropy (namely, that L ⊇ L ′ implies I(A,B | L) > I(A,B | L ′)) is wrong. By this
reason the l o w e r l i m i t and the s y m b o l > are present in the property (ζ): the
corresponding limit may not exist, and the lower limit in some cases may be bigger than
MI(A,B | L).

(α) I(A,B | L) 6 H(A | L), the equality is assured if B ⊇ A.

(β) If L ⊇ L ′, then H(A | L) 6 H(A | L ′), mod 0.

(γ) If B ⊇ B ′, then MI(A,B | L) = MI(A,B ′ | L)+MI(A,B | L∨B ′), where L∨B ′)
is the minimal closed σ-algebra containing L and B ′.

(δ) If B ⊇ B ′, then MI(A,B | L) > MI(A,B ′ | L).

(ε) If A1 ⊆ A2 ⊆ . . . ⊆ An . . .
⋃
n
An = A, then limn→∞ MI(An,B | L) =

= MI(A,B | L).

(ζ) If L1 ⊇ L2 ⊇ . . . ⊇ Ln . . .
⋂
n
Ln = L, then lim infn→∞ MI(A,B | Ln) >

> MI(A,B | L).

2. The definition of the invariant h

We will say that a flow {St} is quasiregular (is of the type R) if 2 there is a closed
subalgebra γ0 of the algebra γ, such that its translations γt = Stγ0 have the following
properties: (I) γt ⊆ γt ′ , if t 6 t ′. (II)

⋃
t
γt = γ. (III)

⋂
t
γt = N.

If the flow is interpreted as a stationary random process, then γt may be considered
as the algebra of events “depending only on the behavior of the process u p t o t h e m
o m e n t o f t i m e t”. One can easily prove that flows of type R are transitive, and one
can deduce from the results of Plessner [12, 19] that they have homogeneous Lebesgue
spectrum. If the multiplicity of the spectrum is equal to ν (ν = 1, 2, . . . ,ω), then we will
say that the flow is a flow of type Rν. It is obvious that Rν ⊆ Lν, where Lν is the class of
flows with homogeneous Lebesgue spectrum of multiplicity ν. It was shown in [13] that
class of flows Rν with finite ν is empty. At the same time R∞ 6= L∞. For example, the

2This condition is much weaker that the condition of “regularity” usually used in the theory of random
processes. See the end of § 4 for this.
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horocyclic flow on a compact closed surface of constant negative curvature has Lebesgue
spectrum of countably infinite multiplicity (see [14]) and is not quasiregular (see [15]).

T h e o r e m 1. For the flow {St}, if there exist γ0 with the properties (I), (II), (III), and if
∆ > 0, then MH(γi+∆ | γi) = ∆h(γ0), where h(γ0) is a constant such that 0 < h(γ0) 6 ∞.

The proof of Theorem 1 uses only the property (I) of quasiregular subalgebra. For
a general flow {St}, we will call subalgebra γ0 monotone, if St(γ0)) ⊇ γ0 for t > 0. For
monotone subalgebras the conclusion of Theorem 1 still holds.

The paper [1] included also Theorem 2, which is wrong, as was pointed out to me by
Rokhlin (see [16]). The rest of this section differs from the corresponding part of [1].

It is simpler to deal with automorphisms. It is obvious how to transfer the defini-
tions of a quasiregular and a monotone subalgebra to this case. Some simple examples
of monotone subalgebras can be constructed as follows. Let A0 be an arbitrary finite
subalgebra, Anm =

⋃
m<k6n

TkA0 for arbitrary −∞ 6 m < n <∞. Then γ0 = A0
−∞ will be a

monotone subalgebra. We will call such monotone subalgebras finitely generated.
T h e e n t r o p y o f a n a u t o m o r p h i s m T is defined as the number

h0 = supH(Tγ0 | γ0), where the supremum is taken of all monotone subalgebras.
Let
1) h = supH(Tγ0 | γ0), where the supremum is taken over all finitely generated

monotone subalgebras;
2) h1 = supH(Tγ0 | γ0), where the supremum is taken over all monotone subalgebras

such that
⋃
n
Tnγ0 = γ;

3) h2 = supH(Tγ0 | γ0), where the supremum is taken over all monotone subalgebras
such that

⋂
n
Tnγ0 = N.

Each of the numbers h, h0, h1, h2 is, by its definition, a metric invariant of the auto-
morphism. The invariant h was introduced in [17] and now serves as the most widely
used definition of the entropy of an automorphism.

T h e o r e m 2. In the case of transitive automorphisms h = h0 = h1 = h2.
P r o o f. Let γ0 be a monotone subalgebra. Consider an increasing sequence of finite

subalgebras A(n) ⊆ γ0,
⋃
n
A(n) = γ0. Since γ0 is monotone, we have (A(n))0

−∞ ⊆ γ0,
⋃
n
(A(n))0

−∞ = γ0. By applying properties (ε) and (β), we get

H(Tγ0 | γ0) = lim
n→∞

H(TA(n) | γ0) 6 lim
n→∞

H(TA(n) | (A(n))0
−∞).

Since all monotone subalgebras (A(n))0
−∞ are finitely generated, this immediately implies

that h = h0 = h2.
The proof of the equality h = h2 follows from a result of [18] to the effect that for

every finitely generated monotone subalgebra γ0 there exists a finite subalgebra A0 ⊆ γ0,
such that all translations TnA0 for a sequence of mutually independent subalgebras and
H(A0) = H(T(A0)

0
−∞ | (A0)

0
−∞) = H(Tγ0 | γ0).
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3. Invariants of automorphisms

Every automorphism of the type R0 (the subscript is placed in order to distinguish
this case from the case of the flows with continuous time) has the Lebesgue spectrum
of countably infinite multiplicity, i.e. among the classes Rν0 only the class Rω0 ⊆ Lω0 is
non-empty. This class splits into subclasses Rω0 (h) according to the values h(T).

For every h, 0 < h 6 ∞, there are automorphisms with h = h(T).
Examples with h > 0 result from the scheme of independent random trials . . . L−1,

L0, L1, . . . , Lt, . . . with the probability distribution ξt of the trial Lt given by

P(ξt = ai) = pi, −

∞∑

i=1

pi logpi = h. (5)

The space M is assembled from sequences x = (. . . , x−1, x0, x1, . . . , xt, . . .), xt = a1,a2, . . .,
and the translation Tx = x ′ is defined by the formula x ′t = xt−1. The measure µ on M is
defined as the direct product of the probability measures (5).

4. Invariants of flows

In the case of flows we set h({St}) = H(S1). For every h, 0 < h < ∞, there exist
a flow of the class Rω0 (h), i.e. a flow having Lebesgue spectrum of countably infinite
multiplicity and with the prescribed value of the constant h.

The analogy with Section 3 naturally suggests the idea of replacing for the proof
of Theorem 4 the discrete independent trials by the “processes with independent in-
crements” or by generalized processes “with independent values” [19, 20]. But such an
approach leads only to flows of the class Rω0 (∞) [6]. In order to get finite values h one
needs to use some more artificial construction. It is possible to present in this note only
an outline of one such construction.

Let us define independent random variables ξn, corresponding to all integers n, with
the following probability distributions of their values: P(ξ0 = k) = 3 · 4−k, k = 1, 2, . . .,
and P(ξn = k) = 2−k, k = 1, 2, . . ., for n 6= 0. In the case ξ0 = k, let us consider a random
point τ0 of the t-axis with uniform probability distribution in the interval −u2−k 6 τ0 6
0, and let us define random points τn for n 6= 0 by the relation τn+1 = τn + u2−ξn .

Let ϕ(t) = ξn for τn 6 t < τn+1. It is easy to check that the distribution of the random
function ϕ(t) is invariant with respect to the translations Stϕ(t0) = ϕ(t0 − t). It is easy
to calculate that h{St} = 6u−1 (during a unit of time one encounters 3u−1 points τn in

average, and every ξn contributes the entropy
∞∑
i=1
k2−k = 2).
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One can get a more graphic description of our stochastic process if we include into
the description of its state ω(t) at moment of time t, in addition to the value ϕ(t), the
value δ(t) = t− τ∗(t) of the difference between t and the closest to t from the left point
τn. If described in this way, our process turns out to be a stationary Markov process. It
deserves to be called only “quasiregular”, because, while the corresponding dynamical
system is transitive, the value of the difference f(ω(t), t) = τ∗(t) = t− δ(t) is determined
up to a dyadic-rational summand by the behaviors of the process realization in any
arbitrary far past.

I am grateful to Y. G. Sinai for his participation in the preparation of this paper.
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